DRUG INCORPORATION OF ACRYLIC RESINS MICROBIOLOGICAL AND RELEASE STUDIES

OBJECTIVES

Evaluate the drug release and antifungal activity against Candida albicans of acrylic reline resins loaded with chlorhexidine.

MATERIALS AND METHODS

ACRYLIC RESINS

- Kooliner (K)
- Ufi Gel Hard (U)
- Probase Cold (PC)

PREPARATION OF SPECIMENS

- CHX Diacetate: 0%, 1%, 2.5%, 5%, 7.5% e 10% (w/w)

DRUG RELEASE

- 12 x 6 mm
- Releasing solutions: Artificial saliva

ANTIFUNGAL ACTIVITY

EXPERIMENTAL GROUPS

<table>
<thead>
<tr>
<th>CHX %</th>
<th>Experimental Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>Resin with 0% CHX</td>
</tr>
<tr>
<td>1%</td>
<td>Resin with 1% CHX</td>
</tr>
<tr>
<td>2.5%</td>
<td>Resin with 2.5% CHX</td>
</tr>
<tr>
<td>5%</td>
<td>Resin with 5% CHX</td>
</tr>
<tr>
<td>7.5%</td>
<td>Resin with 7.5% CHX</td>
</tr>
<tr>
<td>10%</td>
<td>Resin with 10% CHX</td>
</tr>
</tbody>
</table>

POSITIVE CONTROLS

- CHX – Paper disk with CHX
- F – Paper disk with Fusarium oxysporum B

RESULTS

DRUG RELEASE

- For all CHX % and for the majority of time intervals, Ufi Gel Hard released the highest amount of CHX, followed by Kooliner and Probase Cold.

ANTIFUNGAL ACTIVITY

- No group with 1% CHX presented inhibition zone, and only the Kooliner group presented inhibition zone in specimens with 2.5% CHX (8.95 ± 0.97 mm).

- Probase Cold presented lower values than Ufi Gel Hard (p = 0.017).

- There was a tendency to increase the diameter of inhibition zone with the increase of the percentage of CHX incorporated in the material (p = 0.198).

CONCLUSION

- Different acrylic reline resins compositions and different CHX loading percentages affect the drug release.

- The incorporation of CHX into acrylic resins seems to have an influence on the microbiological activity against this strain of C. albicans.

- U appears to be the resin which releases more CHX and which, at 5% CHX concentration, already exhibits antifungal activity.

- CHX delivery systems based on acrylic reline resins are a potential approach in the treatment of denture stomatitis.

REFERENCES

ACKNOWLEDGEMENTS

- The support of FCT – Fundação para a Ciência e a Tecnologia, Portugal (FCT), through the project IF/01213/2012, is acknowledged.